4/18/2020

bep_0003.rst_post

BitTorrent.org

Home For Users For Developers Developer mailing list Forums (archive)

BEP: 3

Title: The BitTorrent Protocol Specification

Version: 0e08ddf84d8d3bf101cdf897fc312f2774588c9%e

Last-

Modified: Sat Feb 4 12:58:40 2017 +0100

Author: Bram Cohen <bram@bittorrent.com>

Status: Final
Type: Standard
Created: 10-Jan-2008

24-Jun-2009 (arvid@bittorrent.com), clarified the encoding of strings in torrent files. 20-Oct-2012
(arvid@bittorrent.com), clarified that info-hash is the digest of en bencoding found in .torrent file. Introduced
some references to new BEPs and cleaned up formatting. 11-Oct-2013 (arvid@bittorrent.com), correct the
accepted and de-facto sizes for request messages 04-Feb-2017 (the8472.bep@infinite-source.de), further
info-hash clarifications, added resources for new implementors

Post-
History:

BitTorrent is a protocol for distributing files. It identifies content by URL and is designed to integrate seamlessly with the
web. Its advantage over plain HTTP is that when multiple downloads of the same file happen concurrently, the
downloaders upload to each other, making it possible for the file source to support very large numbers of downloaders
with only a modest increase in its load.

A BitTorrent file distribution consists of these entities:

An ordinary web server

A static 'metainfo’ file

A BitTorrent tracker

An ‘original' downloader
The end user web browsers
The end user downloaders

There are ideally many end users for a single file.

To start serving, a host goes through the following steps:

1.
2.
3.

Start running a tracker (or, more likely, have one running already).
Start running an ordinary web server, such as apache, or have one already.

Associate the extension .torrent with mimetype application/x-bittorrent on their web server (or have done so
already).

. Generate a metainfo (.torrent) file using the complete file to be served and the URL of the tracker.
. Put the metainfo file on the web server.
. Link to the metainfo (.torrent) file from some other web page.

www.bittorrent.org/beps/bep_0003.html

1/6


http://www.bittorrent.org/index.html
http://www.bittorrent.org/index.html
http://www.bittorrent.org/introduction.html
http://www.bittorrent.org/beps/bep_0000.html
http://www.bittorrent.org/mailing_list.html
http://forum.bittorrent.org/
mailto:bram%40bittorrent.com
mailto:arvid%40bittorrent.com
mailto:arvid%40bittorrent.com
mailto:arvid%40bittorrent.com
mailto:the8472.bep%40infinite-source.de

4/18/2020 bep_0003.rst_post
7. Start a downloader which already has the complete file (the 'origin’).

To start downloading, a user does the following:
1. Install BitTorrent (or have done so already).
2. Surf the web.
3. Click on a link to a .torrent file.
4. Select where to save the file locally, or select a partial download to resume.
5. Wait for download to complete.
6. Tell downloader to exit (it keeps uploading until this happens).

bencoding
» Strings are length-prefixed base ten followed by a colon and the string. For example 4: spam corresponds to
'spam'.
« Integers are represented by an ‘i followed by the number in base 10 followed by an 'e’. For example i3e

corresponds to 3 and 1 -3e corresponds to -3. Integers have no size limitation. i-0e is invalid. All encodings
with a leading zero, such as 103e, are invalid, other than 10e, which of course corresponds to 0.

¢ Lists are encoded as an 'I' followed by their elements (also bencoded) followed by an 'e'. For example
14:spam4:eggse corresponds to ['spam’, 'eggs’].

« Dictionaries are encoded as a 'd' followed by a list of alternating keys and their corresponding values followed
by an 'e'. For example, d3: cow3:moo4: spam4:eggse corresponds to {'cow': 'moo’, 'spam': 'eggs'} and
d4:spamll:al:bee corresponds to {'spam' ['a', 'b']}. Keys must be strings and appear in sorted order (sorted
as raw strings, not alphanumerics).

metainfo files

Metainfo files (also known as .torrent files) are bencoded dictionaries with the following keys:

announce
The URL of the tracker.

info

This maps to a dictionary, with keys described below.
All strings in a .torrent file that contains text must be UTF-8 encoded.

info dictionary

The name key maps to a UTF-8 encoded string which is the suggested name to save the file (or directory) as. It is purely
advisory.

piece length maps to the number of bytes in each piece the file is split into. For the purposes of transfer, files are split
into fixed-size pieces which are all the same length except for possibly the last one which may be truncated. piece
length is almost always a power of two, most commonly 2 18 = 256 K (BitTorrent prior to version 3.2 uses 2 20 =1 M as
default).

pieces maps to a string whose length is a multiple of 20. It is to be subdivided into strings of length 20, each of which is
the SHA1 hash of the piece at the corresponding index.

There is also a key length or a key files, but not both or neither. If Length is present then the download represents a
single file, otherwise it represents a set of files which go in a directory structure.

In the single file case, Length maps to the length of the file in bytes.

For the purposes of the other keys, the multi-file case is treated as only having a single file by concatenating the files in
the order they appear in the files list. The files list is the value files maps to, and is a list of dictionaries containing the
following keys:

www.bittorrent.org/beps/bep_0003.html 2/6



4/18/2020 bep_0003.rst_post
length - The length of the file, in bytes.

path - A list of UTF-8 encoded strings corresponding to subdirectory names, the last of which is the actual file name (a
zero length list is an error case).

In the single file case, the name key is the name of a file, in the muliple file case, it's the name of a directory.

trackers

Tracker GET requests have the following keys:
info_hash

The 20 byte shal hash of the bencoded form of the info value from the metainfo file. This value will almost certainly have to
be escaped.

Note that this is a substring of the metainfo file. The info-hash must be the hash of the encoded form as found in the .torrent
file, which is identical to bdecoding the metainfo file, extracting the info dictionary and encoding it if and only if the bdecoder
fully validated the input (e.g. key ordering, absence of leading zeros). Conversely that means clients must either reject
invalid metainfo files or extract the substring directly. They must not perform a decode-encode roundtrip on invalid data.

peer_id
A string of length 20 which this downloader uses as its id. Each downloader generates its own id at random at the start of a
new download. This value will also almost certainly have to be escaped.

ip
An optional parameter giving the IP (or dns name) which this peer is at. Generally used for the origin if it's on the same
machine as the tracker.

port
The port number this peer is listening on. Common behavior is for a downloader to try to listen on port 6881 and if that port
is taken try 6882, then 6883, etc. and give up after 6889.

uploaded
The total amount uploaded so far, encoded in base ten ascii.

downloaded
The total amount downloaded so far, encoded in base ten ascii.

left
The number of bytes this peer still has to download, encoded in base ten ascii. Note that this can't be computed from
downloaded and the file length since it might be a resume, and there's a chance that some of the downloaded data failed an
integrity check and had to be re-downloaded.

event

This is an optional key which maps to started, completed, or stopped (or empty, which is the same as not being
present). If not present, this is one of the announcements done at regular intervals. An announcement using started is
sent when a download first begins, and one using completed is sent when the download is complete. No completed is
sent if the file was complete when started. Downloaders send an announcement using stopped when they cease
downloading.

Tracker responses are bencoded dictionaries. If a tracker response has a key failure reason, then that maps to a
human readable string which explains why the query failed, and no other keys are required. Otherwise, it must have two
keys: interval, which maps to the number of seconds the downloader should wait between regular rerequests, and
peers. peers maps to a list of dictionaries corresponding to peers, each of which contains the keys peer id, ip, and
port, which map to the peer's self-selected ID, IP address or dns name as a string, and port number, respectively. Note
that downloaders may rerequest on nonscheduled times if an event happens or they need more peers.

www.bittorrent.org/beps/bep_0003.html 3/6


http://www.bittorrent.org/beps/bep_0023.html

4/18/2020 bep_0003.rst_post

If you want to make any extensions to metainfo files or tracker queries, please coordinate with Bram Cohen to make sure
that all extensions are done compatibly.

It is common to announce over a UDP tracker protocol as well.

peer protocol

BitTorrent's peer protocol operates over TCP or uTP.

Peer connections are symmetrical. Messages sent in both directions look the same, and data can flow in either direction.

The peer protocol refers to pieces of the file by index as described in the metainfo file, starting at zero. When a peer
finishes downloading a piece and checks that the hash matches, it announces that it has that piece to all of its peers.

Connections contain two bits of state on either end: choked or not, and interested or not. Choking is a notification that no
data will be sent until unchoking happens. The reasoning and common techniques behind choking are explained later in
this document.

Data transfer takes place whenever one side is interested and the other side is not choking. Interest state must be kept
up to date at all times - whenever a downloader doesn't have something they currently would ask a peer for in unchoked,
they must express lack of interest, despite being choked. Implementing this properly is tricky, but makes it possible for
downloaders to know which peers will start downloading immediately if unchoked.

Connections start out choked and not interested.

When data is being transferred, downloaders should keep several piece requests queued up at once in order to get good
TCP performance (this is called 'pipelining'.) On the other side, requests which can't be written out to the TCP buffer
immediately should be queued up in memory rather than kept in an application-level network buffer, so they can all be
thrown out when a choke happens.

The peer wire protocol consists of a handshake followed by a never-ending stream of length-prefixed messages. The
handshake starts with character ninteen (decimal) followed by the string 'BitTorrent protocol'. The leading character is a
length prefix, put there in the hope that other new protocols may do the same and thus be trivially distinguishable from
each other.

All later integers sent in the protocol are encoded as four bytes big-endian.

After the fixed headers come eight reserved bytes, which are all zero in all current implementations. If you wish to extend
the protocol using these bytes, please coordinate with Bram Cohen to make sure all extensions are done compatibly.

Next comes the 20 byte shal hash of the bencoded form of the info value from the metainfo file. (This is the same value
which is announced as info_hash to the tracker, only here it's raw instead of quoted here). If both sides don't send the
same value, they sever the connection. The one possible exception is if a downloader wants to do multiple downloads
over a single port, they may wait for incoming connections to give a download hash first, and respond with the same one
if it's in their list.

After the download hash comes the 20-byte peer id which is reported in tracker requests and contained in peer lists in
tracker responses. If the receiving side's peer id doesn't match the one the initiating side expects, it severs the
connection.

That's it for handshaking, next comes an alternating stream of length prefixes and messages. Messages of length zero
are keepalives, and ignored. Keepalives are generally sent once every two minutes, but note that timeouts can be done
much more quickly when data is expected.

peer messages
All non-keepalive messages start with a single byte which gives their type.

The possible values are:
www.bittorrent.org/beps/bep_0003.html 4/6


http://www.bittorrent.org/beps/bep_0015.html
http://www.bittorrent.org/beps/bep_0029.html

4/18/2020 bep_0003.rst_post
e 0-choke
e 1 -unchoke
e 2 -interested
e 3 -notinterested
e 4-have
e 5 - hitfield
e 6 -request
e 7 -piece
e 8- cancel

‘choke’, ‘unchoke’, ‘interested’, and 'not interested' have no payload.

‘bitfield" is only ever sent as the first message. Its payload is a bitfield with each index that downloader has sent set to one
and the rest set to zero. Downloaders which don't have anything yet may skip the 'bitfield' message. The first byte of the
bitfield corresponds to indices 0 - 7 from high bit to low bit, respectively. The next one 8-15, etc. Spare bits at the end are
set to zero.

The 'have' message's payload is a single number, the index which that downloader just completed and checked the hash
of.

'request’ messages contain an index, begin, and length. The last two are byte offsets. Length is generally a power of two
unless it gets truncated by the end of the file. All current implementations use 2*14 (16 kiB), and close connections which
request an amount greater than that.

‘cancel’ messages have the same payload as request messages. They are generally only sent towards the end of a
download, during what's called 'endgame mode'. When a download is almost complete, there's a tendency for the last few
pieces to all be downloaded off a single hosed modem line, taking a very long time. To make sure the last few pieces
come in quickly, once requests for all pieces a given downloader doesn't have yet are currently pending, it sends requests
for everything to everyone it's downloading from. To keep this from becoming horribly inefficient, it sends cancels to
everyone else every time a piece arrives.

‘piece’ messages contain an index, begin, and piece. Note that they are correlated with request messages implicitly. It's
possible for an unexpected piece to arrive if choke and unchoke messages are sent in quick succession and/or transfer is
going very slowly.

Downloaders generally download pieces in random order, which does a reasonably good job of keeping them from having
a strict subset or superset of the pieces of any of their peers.

Choking is done for several reasons. TCP congestion control behaves very poorly when sending over many connections
at once. Also, choking lets each peer use a tit-for-tat-ish algorithm to ensure that they get a consistent download rate.

The choking algorithm described below is the currently deployed one. It is very important that all new algorithms work well
both in a network consisting entirely of themselves and in a network consisting mostly of this one.

There are several criteria a good choking algorithm should meet. It should cap the number of simultaneous uploads for
good TCP performance. It should avoid choking and unchoking quickly, known as 'fibrillation'. It should reciprocate to
peers who let it download. Finally, it should try out unused connections once in a while to find out if they might be better
than the currently used ones, known as optimistic unchoking.

The currently deployed choking algorithm avoids fibrillation by only changing who's choked once every ten seconds. It
does reciprocation and number of uploads capping by unchoking the four peers which it has the best download rates from
and are interested. Peers which have a better upload rate but aren't interested get unchoked and if they become
interested the worst uploader gets choked. If a downloader has a complete file, it uses its upload rate rather than its
download rate to decide who to unchoke.

www.bittorrent.org/beps/bep_0003.html 5/6



4/18/2020 bep_0003.rst_post

For optimistic unchoking, at any one time there is a single peer which is unchoked regardless of its upload rate (if
interested, it counts as one of the four allowed downloaders.) Which peer is optimistically unchoked rotates every 30
seconds. To give them a decent chance of getting a complete piece to upload, new connections are three times as likely
to start as the current optimistic unchoke as anywhere else in the rotation.

Resources

e The BitTorrent Economics Paper outlines some request and choking algorithms clients should implement for
optimal performance

« When developing a new implementation the Wireshark protocol analyzer and its dissectors for bittorrent can be
useful to debug and compare with existing ones.

Copyright

This document has been placed in the public domain.

www.bittorrent.org/beps/bep_0003.html 6/6


http://bittorrent.org/bittorrentecon.pdf
https://wiki.wireshark.org/BitTorrent

